506 research outputs found

    Discrete/finite element modelling of rock cutting with a TBM disc cutter

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00603-016-1133-7This paper presents advanced computer simulation of rock cutting process typical for excavation works in civil engineering. Theoretical formulation of the hybrid discrete/finite element model has been presented. The discrete and finite element methods have been used in different subdomains of a rock sample according to expected material behaviour, the part which is fractured and damaged during cutting is discretized with the discrete elements while the other part is treated as a continuous body and it is modelled using the finite element method. In this way, an optimum model is created, enabling a proper representation of the physical phenomena during cutting and efficient numerical computation. The model has been applied to simulation of the laboratory test of rock cutting with a single TBM (tunnel boring machine) disc cutter. The micromechanical parameters have been determined using the dimensionless relationships between micro- and macroscopic parameters. A number of numerical simulations of the LCM test in the unrelieved and relieved cutting modes have been performed. Numerical results have been compared with available data from in-situ measurements in a real TBM as well as with the theoretical predictions showing quite a good agreement. The numerical model has provided a new insight into the cutting mechanism enabling us to investigate the stress and pressure distribution at the tool–rock interaction. Sensitivity analysis of rock cutting performed for different parameters including disc geometry, cutting velocity, disc penetration and spacing has shown that the presented numerical model is a suitable tool for the design and optimization of rock cutting process.Peer ReviewedPostprint (published version

    Advances in the development of the discrete element method for excavation processes

    Get PDF
    Modelling of granular materials, soils and rocks has been a challenging topic of investigation for decades. Classical continuum mechanics has been used to idealize soils and rocks, and numerical solution techniques such as finite element method (FEM) has been used to model these materials. Considering the idealization of the material, continuum mechanics allows the analysis of phenomena with discontinuous nature such as fracture in rock or soil via damage models. However, in more complex processes like rock milling or crushing, this kind of models are usually not suitable. Discrete models are more appropriate for problems with multiple discontinuities and particulate materials. The discrete element method (DEM) has been gaining popularity in analysis of granular materials, soils and rocks. Many aspects of this method still require more profound investigation. This thesis presents new developments of the discrete element method improving effi ciency and accuracy of modelling of rock-like materials, especially in excavation processes. All the numerical algorithms has been implemented in an in-house software, which was then used to run numerical examples. The basic formulation of DEM with linear elastic-perfectly brittle contact model is presented. The main di erence with other models found in the literature is the consideration of global sti ness and strength parameters that are constants in the whole model. The result of a simulations is strongly related with the con guration of the particle assembly used. Particle assemblies should be su ciently compact and ensure the isotropy to reproduce the physical properties of the modelled material. This thesis presents a novel technique for the generation of highly dense particle assemblies in arbitrary geometries, satisfying all the requirements for accurate discrete element simulations. One of the key issues in the use of the DEM is the estimation of the contact model parameters. A methodology is proposed for the estimation of the contact model parameters yielding required macroscopic properties of the material. The relationships between the contact model parameters and the mechanical properties of brittle materials, as well as the influence of the particles assembly con guration on the macroscopic properties, are analysed. A major di culty in the application of the DEM to real engineering problems is the high computational cost in simulation involving a large number of particles. The most common way to solve this is the use of parallel computing techniques, where multiple processors are used. As an alternative, a coupling scheme between DEM and the finite element method (FEM) is proposed in the thesis. Within the hybrid DEM/FEM model, DEM is only used in the region of the domain where it provides an advantage over a continuum-based approach, as the FEM. The coupling is dynamically adapted, starting with the whole domain discretized with FEM. During the simulation, in the regions where a high stress level are found, a change of modelling method from continuum FEM to the discrete DEM is employed. Finally, all the developments are applied to the simulation of a real excavation process. An analysis of the rock cutting process with TBM disc cutters is performed, where DEM and the DEM/FEM coupling technique presents an important advantage over other simulation techniques.La modelación de materiales granulares, terrenos y rocas ha sido un desafío para la investigación por décadas. La mecánica del continuo clásica ha sido utilizada para idealizar terrenos y rocas, y técnicas numéricas de solución, como el método de los elementos finitos (FEM), han sido usadas para modelar estos materiales. Considerando la idealización del material, la mecánica del continuo permite el análisis de fenómenos de naturaleza discontinua como la fractura en rocas y terreno mediante modelos de daño. Sin embargo, en procesos mas complejos como la molienda o trituración de roca, este tipo de modelos no suelen ser adecuados. Los modelos discretos son mas apropiados para problemas con múltiples discontinuidades y material particulado. El método de los elementos discretos (DEM) ha ido ganando popularidad en el análisis de materiales granulares, terrenos y rocas. Sin embargo, muchos aspectos de este método todavía requieren una investigación mas profunda. Esta tesis presenta nuevos desarrollos del método de los elementos discretos para mejorar su eficiencia y precisión en el modelado de materiales como roca, especialmente para procesos de excavación. Todos los algoritmos numéricos se han implementado en el programa propio, que ha sido utilizado para probar distintos ejemplos. La formulación básica del DEM, con un modelo lineal de contacto elástico perfectamente frágil ha sido utilizado en el presente trabajo. La principal diferencia con otros modelos de la literatura es la consideración de que los parámetros de rigidez y fuerzas máximas son valores globales y constantes en todo el modelo. El resultado de la simulación está fuertemente relacionado con la configuración del ensamblaje de partículas utilizado. El ensamblaje de partículas debe ser suficientemente compacto y asegurar la isotropía de las propiedades físicas del material modelado. La tesis presenta una nueva técnica para la generación de ensamblajes de partículas de alta densidad para geometrías arbitrarias, satisfaciendo todos los requisitos para una simulación con elementos discretos correcta. Uno de los temas clave en el uso del DEM es la estimación de los parámetros del modelo de contacto. Se propone una metodología para la estimación de los parámetros del modelo de contacto siguiendo las propiedades macroscópicas requeridas en el material Las relaciones entre los parámetros del modelo y las propiedades mecánicas de materiales frágiles, así como su la influencia de la configuración del ensamblaje de partículas son analizadas. Una gran dificultad en la aplicación del DEM en problemas reales de ingeniería es el alto costo computacional de simulaciones que consideran un gran número de partículas. La solución mas común para resolver esto es el uso de técnicas de computación paralela, donde se utiliza un gran número de procesadores. Como vía alternativa, un esquema acoplado entre el DEM y el FEM expuesto en la tesis. Con el modelo híbrido DEM/FEM, el DEM es usado solo en las partes del dominio donde presenta ventajas sobre el enfoque continuo del FEM. El acoplamiento puede ser adaptado dinámicamente, comenzando con todo el dominio discretizado con FEM, y durante la simulación, en las regiones donde se encuentran altos niveles de tensión, se emplea un cambio del método de simulación de continuo (FEM) a discreto (DEM). Finalmente, todos los desarrollos son aplicados a la simulación de un proceso excavación real. Se realiza un estudio del proceso de corte de roca con discos costadores, utilizados en tuneladoras, donde el DEM y la técnica de acoplamiento presentan una importante ventaja sobre otras técnicas de simulación

    Advances in the development of the discrete element method for excavation processes

    Get PDF
    This work presents new developments of the discrete element method improving e ciency and accuracy of modelling of rock-like materials, especially in excavation processes.Postprint (published version

    Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters

    Get PDF
    Comparative studies of different discrete element models of a rock-type material are presented. The discrete element formulation employs spherical particles with the cohesive interaction model combining linear elastic behaviour with brittle failure. Numerical studies consisted in simulation of the uniaxial compression test. Two cylindrical specimens with particle size distributions yielding different degree of heterogeneity have been used. Macroscopic response produced by different discrete element models has been compared. The main difference between the compared models consists in the evaluation of micromechanical constitutive parameters. Two approaches are compared. In the first approach, the contact stiffness and strength parameters depend on the local particle size, while in the second approach, global uniform contact parameters are assumed for all the contacting pairs in function of average geometric measures characterizing the particle assembly. The size dependent contact parameters are calculated as functions of geometric parameters characterizing each contacting particle pair. As geometric scaling parameters, the arithmetic and harmonic means, as well as the minimum of the radii of two contacting particles are considered. Two different models with size dependent contact parameters are formulated. The performance of these models is compared with that of the discrete element model with global uniform contact parameters. Equivalence between the models with size dependent and uniform contact parameters has been checked. In search of this equivalence, different methods of evaluation of global uniform parameters have been studied. The contact stiffness has been evaluated in terms of the average radius of the particle assembly or in terms of the averages of the arithmetic and harmonic means of the contact pair radii, the geometric parameters used in the evaluation of the contact stiffness in the size-dependent models. The uniform contact strengths have been determined as functions of the averages of radii squares, squares of arithmetic radii means or squares of minimum radii of the contacting pairs. For the more homogenous specimen, the models with local size dependent parameters and models with global uniform parameters give similar response. The models with uniform parameters evaluated according to the averages of the geometric parameters used in the evaluation of local parameters ensure better agreement with the respective models with size-dependent parameters than the models with uniform parameters evaluated according to the particle radii. Simulations using the more heterogenous specimen reveal differences between the considered models. There are significant differences in stress–strain curves as well as in the failure pattern. The models with local size-dependent parameters are more sensitive to the change of heterogeneity than the model with global uniform parameters.Peer ReviewedPostprint (published version

    Modelling and simulation of the effect of blast loading on structures using an adaptive blending of discrete and finite element methods

    Get PDF
    We present a new computational model for predicting the effect of blast loading on structures. The model is based in the adaptive coupling of the finite element method (FEM) and the discrete element method (DEM) for the accurate reproduction of multifracturing and failure of structures under blast loading. In the paper we briefly describe the basis of the coupled DEM/FEM technology and demonstrate its efficiency in its application to the study of the effect of blast loading on a masonry wall, a masonry tunnel and a double curvature dam.Postprint (published version

    Genomic stability in Arabidopsis thaliana transgenic plants obtained by floral dip

    Get PDF
    . The occurrence of DNA modification is an undesired phenomenon accompanying plant cell transformation. The event has been correlated with the stress imposed by the presently utilised transformation procedures, all depending on plant differentiation from in vitro cell culture, but other causes have not been excluded. In this work, transgenic Arabidopsis thaliana plants have been produced by an approach that does not require cell dedifferentiation, being based on in planta Agrobacterium-mediated gene transfer by flower infiltration, which is followed by recovery and selection of transgenic progeny. Genomic DNA changes in transgenic and control plants have been investigated by AFLP and RAMP analysis. Results show no statistically relevant genomic modifications in transgenic plants, as compared with control untreated plants. Variations were observed in callus-derived A. thaliana plants, thus supporting the conclusion that somaclonal variation is essentially correlated with the stress imposed by the in vitro cell culture, rather than with the integration of a foreign gene

    New value from food and industrial wastes - bioaccumulation of omega-3 fatty acids from an oleaginous microbial biomass paired with a brewery by-product using black soldier fly (Hermetia illucens) larvae.

    Get PDF
    Research on bioconversion based on insects is intensifying as it addresses the problem of reducing and reusing food and industrial waste. To reach this goal, we need to find more means of pairing waste to insects. With this goal, brewers\u2019 spent grains (BSG) - a food waste of the brewing industry - paired with the oleaginous biomass of the thraustochytrid Schizochytrium limacinum cultivated on crude glycerol - a major waste of biodiesel production - were successfully used to grow Hermetia illucens larvae. Combining BSG and S. limacinum in the diet in an attempt to design the lipid profile of H. illucens larvae to contain a higher percentage of omega-3 fatty acids is novel. Insect larvae were grown on three different substrates: i) standard diet for Diptera (SD), ii) BSG, and iii) BSG + 10% S. limacinum biomass. The larvae and substrates were analyzed for fatty acid composition and larval growth was measured until 25% of insects reached the prepupal stage. Our data showed that including omega-3-rich S. limacinum biomass in the BSG substrate promoted an increase in larval weight compared to larvae fed on SD or BSG substrates. Furthermore, it was possible, albeit in a limited way, to incorporate omega-3 fatty acids, principally docosahexaenoic acid (DHA) from BSG + S. limacinum substrate containing 20% of DHA into the larval fat (7% DHA). However, H. illucens with this level of DHA may not be suitable if the aim is to get larvae with high omega-3 lipids to feed carnivorous fish

    Plataforma de enseñanza de lenguajes de programación a través de Internet: Proyecto IDEFIX

    Get PDF
    En este artículo se describe la arquitectura del proyecto IDEFIX cuyo objetivo es desarrollar una plataforma que facilite la enseñanza de la programación en diferentes lenguajes mediante la utilización de Internet. El sistema permite la realización de prácticas de laboratorio mediante la creación de un entorno dinámico de desarrollo basado en Internet. En este entorno, los estudiantes tienen acceso a través de Internet a los enunciados de los ejercicios de programación escritos en un formato XML, que facilita la presentación en sistemas heterogéneos y que permite la posterior evaluación de forma automática. El sistema facilitará la realización interactiva de los ejercicios monitorizando los resultados parciales, fomentando el desarrollo colaborativo y facilitando la automatización del proceso de evaluación
    corecore